It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A new differential evolution (DE) algorithm is presented in this paper. The proposed algorithm monitors the evolutionary progress of each individual and assigns appropriate control parameters depends on whether the individual is successfully evolved or not. We conducted the performance evaluation on CEC 2014 benchmark problems and confirmed that the proposed algorithm outperformed than the conventional DE algorithm. In addition, we apply the proposed DE algorithm as an optimization technique of training large scale multilayer perceptron. We conducted the performance evaluation on an artificial neural network that has approximately 1,000 weights and confirmed again that the proposed algorithm performed better than the conventional DE algorithm. As a result, we proposed a new DE algorithm that has better optimization performance for solving large-scale global optimization problems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, Republic of Korea





