It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Titanium oxide nanotube (TiO2 nanotube) arrays were produced by anodizing titanium foils in two different electrolytes. The first electrolyte consisted of ethylene glycol containing 0.5 wt% NH4F and 4 vol% of distilled water to produce pure TiO2 nanotube arrays and the second consisted of HF aqueous solution (0.5 wt%) containing 0.5% polyvinylalcohol to produce carbon doped TiO2 nanotube arrays. The fabricated TiO2 nanotube arrays were subsequently annealed in the atmosphere of nitrogen. The morphology and crystal structure of fabricated arrays were characterized by means of scanning electron microscopy and X-ray diffraction. The electrical conductivity and capacitance of TiO2 nanotube arrays were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Water contact angle and biocompatibility of fabricated nanotube arrays were investigated. The results showed that carbon doped TiO2 nanotube arrays annealed in the atmosphere of nitrogen have higher conductivity and capacitance than those of pure arrays annealed in the same atmosphere. Doping with carbon enhances the biocompatibility and wettability of TiO2 nanotube arrays. It has also noted that electrical conductivity and capacitance of TiO2 nanotube arrays were directly proportional to the tube wall thickness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute for Intelligent Systems Research and Innovation, Deakin University, Vic 3216,Australia
2 Australian Animal Health Laboratory - CSIRO, Vic 3219, Australia
3 Institute for Frontier Materials, Deakin University, Vic 3216, Australia
4 Center for material and surface science, Department of chemistry and physics, La Trobe University, Vic 3086,Australia