Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Smart cities (SC) promote economic development, improve the welfare of their citizens, and help in the ability of people to use technologies to build sustainable services. However, computational methods are necessary to assist in the process of creating smart cities because they are fundamental to the decision-making process, assist in policy making, and offer improved services to citizens. As such, the aim of this research is to present a systematic review regarding data mining (DM) and machine learning (ML) approaches adopted in the promotion of smart cities. The Methodi Ordinatio was used to find relevant articles and the VOSviewer software was performed for a network analysis. Thirty-nine significant articles were identified for analysis from the Web of Science and Scopus databases, in which we analyzed the DM and ML techniques used, as well as the areas that are most engaged in promoting smart cities. Predictive analytics was the most common technique and the studies focused primarily on the areas of smart mobility and smart environment. This study seeks to encourage approaches that can be used by governmental agencies and companies to develop smart cities, being essential to assist in the Sustainable Development Goals.

Details

Title
Data Mining and Machine Learning to Promote Smart Cities: A Systematic Review from 2000 to 2018
Author
de Francisco, Antonio Carlos  VIAFID ORCID Logo  ; Cassiano Moro Piekarski  VIAFID ORCID Logo  ; do Prado, Guilherme Francisco
First page
1077
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2574339417
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.