It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The gut microbiota provides health benefits in humans by producing short-chain fatty acids (SCFAs), whose deficiency causes multiple disorders and inflammatory diseases. However, gut bacteria producing SCFAs in patients with atrial fibrillation (AF), an arrhythmia with increasing prevalence, have not been reported. To investigate major gut microbial organisms related to SCFA synthesis, SCFAs-associated KEGG orthologues (KOs), enzymatic genes, and potential producers were examined according to metagenomic data-mining in a northern Chinese cohort comprising 50 non-AF control and 50 AF patients.
Results
Compared with non-AF controls, individuals with AF had marked differences in microbial genes involved in SCFA-related synthesis, including 125 KOs and 5 SCFAs-related enzymatic genes. Furthermore, there were 10 species that harbored SCFA-synthesis related enzymatic genes, and were markedly decreased in the gut of AF patients. Notably, discriminative features about SCFA-synthesis related function, including 8 KOs (K01752, K01738, K00175, K03737, K01006, K01653, K01647 and K15023), 4 genes (menI, tesB, yciA and CO dehydrogenase acetyl-CoA synthase complex) and 2 species (Coprococcus catus and Firmicutes bacterium CAG:103), were selected as key factors based on LASSO analysis. Furthermore, PLS-SEM analysis showed that 72.8 and 91.14 % of the overall effects on gut microbiota diversity and key species on AF, respectively, were mediated by the key KOs. Meanwhile, 46.31 % of the total effects of SCFA-synthesis related function on left atrial enlargement was mediated by hsCRP. Upon incorporation of clinical properties in AF, the KO score was still significantly associated with AF incidence (OR = 0.004, P = 0.001).
Conclusions
The current study revealed that dysbiotic gut microbiota in AF is coupled with disrupted SCFA-synthesis related genes, characterized by decreased abundances of KEGG orthologues, synthesis enzymatic genes and harboring species.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer