It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent optical polarimetry observations of an X-ray dim isolated neutron star, RX J1856.5−3754, showed a first evidence for QED vacuum birefringence induced by a strong magnetic field. This important result can be confirmed by performing systematically polarimetry observations in the X-ray band for other strongly magnetized neutron stars, such as transient or persistent magnetars. We computed the phase averaged polarization fraction (PF) and polarization angle (PA) expected in the thermal emission from transient magnetars in the soft X-ray energy band. We found that the detection of a PF higher than 60% is a strong evidence for vacuum birefringence. We also found that a steady change in the PA measured from transient magnetars during their outburst decay (up to 23 degrees for a magnetospheric untwisting of 0.5 rad) is a strong signature of vacuum birefringence. This latter detection would also provide an independent check of the magnetospheric untwisting model for these sources. Simulations show that these measurements are achievable by future polarimetric missions such as XIPE and IXPE with 20−380 ks of observational time, and with eXTP with 3−60 ks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
2 Department of Physics, University of Padova, via Marzolo 8, 35131 Padova, Italy