It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
A major limitation of current predictive prognostic models in patients with COVID-19 is the heterogeneity of population in terms of disease stage and duration. This study aims at identifying a panel of clinical and laboratory parameters that at day-5 of symptoms onset could predict disease progression in hospitalized patients with COVID-19.
Methods
Prospective cohort study on hospitalized adult patients with COVID-19. Patient-level epidemiological, clinical, and laboratory data were collected at fixed time-points: day 5, 10, and 15 from symptoms onset. COVID-19 progression was defined as in-hospital death and/or transfer to ICU and/or respiratory failure (PaO2/FiO2 ratio < 200) within day-11 of symptoms onset. Multivariate regression was performed to identify predictors of COVID-19 progression. A model assessed at day-5 of symptoms onset including male sex, age > 65 years, dyspnoea, cardiovascular disease, and at least three abnormal laboratory parameters among CRP (> 80 U/L), ALT (> 40 U/L), NLR (> 4.5), LDH (> 250 U/L), and CK (> 80 U/L) was proposed. Discrimination power was assessed by computing area under the receiver operating characteristic (AUC) values.
Results
A total of 235 patients with COVID-19 were prospectively included in a 3-month period. The majority of patients were male (148, 63%) and the mean age was 71 (SD 15.9). One hundred and ninety patients (81%) suffered from at least one underlying illness, most frequently cardiovascular disease (47%), neurological/psychiatric disorders (35%), and diabetes (21%). Among them 88 (37%) experienced COVID-19 progression. The proposed model showed an AUC of 0.73 (95% CI 0.66–0.81) for predicting disease progression by day-11.
Conclusion
An easy-to-use panel of laboratory/clinical parameters computed at day-5 of symptoms onset predicts, with fair discrimination ability, COVID-19 progression. Assessment of these features at day-5 of symptoms onset could facilitate clinicians’ decision making. The model can also play a role as a tool to increase homogeneity of population in clinical trials on COVID-19 treatment in hospitalized patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer