Abstract

The QCD phase diagram, in particular its sector of high baryon density, is one of the most prominent outstanding mysteries within the Standard Model of particle physics. We sketch a project how to arrive at a conjecture for the case of two massless quark flavours. The pattern of spontaneous chiral symmetry breaking is isomorphic to the spontaneous magnetisation in an O(4) non-linear σ-model, which can be employed as a low-energy effective theory to study the critical behaviour. We focus on the 3d O(4) model, where the configurations are divided into topological sectors, as in QCD. A topological winding with minimal Euclidean action is denoted as a skyrmion, and the topological charge corresponds to the QCD baryon number. This effective model can be simulated on a lattice with a powerful cluster algorithm, which should allow us to identify the features of the critical temperature, as we proceed from low to high baryon density. In this sense, this projected numerical study has the potential to provide us with a conjecture about the phase diagram of QCD with two massless quark flavours.

Details

Title
Conjecture about the 2-Flavour QCD Phase Diagram
Author
Nava Blanco, M A 1 ; Bietenholz, W 2 ; A Fernández Téllez 1 

 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Mexico 
 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, C.P. 04510 Ciudad de México, Mexico 
Publication year
2017
Publication date
Oct 2017
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2574483573
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.