Abstract

Alumina, such as glazed alumina for electrical insulator, operated in an open field subjects to a very harsh condition; resulting in lifetime shortening. Coating hydrophobic layer on alumina surface can help prolonging its lifetime. In this study, 25 ×25 mm alumina sheets were used as substrates. The hydrophobic composite polymers were prepared from (3-mercaptopropyl)trimethoxysilane(MPTMS), 2,4,6,8-tetramethyl-2,4,6,8tetravinylcyclotetra siloxane(TMTVSi), pentaerythritoltetra(3-mercaptopropionate)(PETMP), 2,2-dimethoxy-2-phe nylaceto phenone(photoinitiator) and heptadecafluorodecylmethacrylate(HEFDMA) via the thiol-ene reaction. The alumina sheets were first activated by dielectric-barrier discharge plasma to improve its adhesion. All the polymers were found to optimize at the ratio of (MPTMS:TMTVSi:PETMP:HDFDMA) to 4:2:1:2 for coating on the alumina substrate. To enhance polymerization, 2,2-dimethoxy-2-phenylaceto phenome was also used as a photoinitiator A proper mixing sequence in the thiol-ene reaction results in film with excellent surface retention after prolong soaking in solvent such as acetone. FTIR shows that S-H and C=C functional groups have significantly changed after photopolymerization and thermally cured. The static contact angle increase from mere 53.0°±1.5° of the uncoated substrate to 120.0°±1.2° after coating. SEM shows the film with clear appearance of a few-micron thick. Under AFM, the coated surface roughness was about 9.3 nm with evenly distributed spikes of a few nanometer in height. The cross-cut test also confirmed the film was very smooth and none of the square of the films detached.

Details

Title
Hydrophobic thiol-ene surfaces fabricated via plasma activation and photo polymerization
Author
Champathet, P 1 ; Ervithayasuporn, V 2 ; Osotchan, T 3 ; Dangtip, S 3 

 Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand 
 Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand 
 Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand; NANOTEC Center of Excellence. Faculty of Science, Mahidol University, Bangkok, 10400, Thailand 
Publication year
2017
Publication date
Sep 2017
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2574538375
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.