It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
N6,2′-O-dimethyladenosine (m6Am) is an abundant RNA modification located adjacent to the 5′-end of the mRNA 7-methylguanosine (m7G) cap structure. m6A methylation on 2′-O-methylated A at the 5′-ends of mRNAs is catalyzed by the methyltransferase Phosphorylated CTD Interacting Factor 1 (PCIF1). The role of m6Am and the function of PCIF1 in regulating host–pathogens interactions are unknown. Here, we investigate the dynamics and reprogramming of the host m6Am RNA methylome during HIV infection. We show that HIV infection induces a dramatic decrease in m6Am of cellular mRNAs. By using PCIF1 depleted T cells, we identify 2237 m6Am genes and 854 are affected by HIV infection. Strikingly, we find that PCIF1 methyltransferase function restricts HIV replication. Further mechanism studies show that HIV viral protein R (Vpr) interacts with PCIF1 and induces PCIF1 ubiquitination and degradation. Among the m6Am genes, we find that PCIF1 inhibits HIV infection by enhancing a transcription factor ETS1 (ETS Proto-Oncogene 1, transcription factor) stability that binds HIV promoter to regulate viral transcription. Altogether, our study discovers the role of PCIF1 in HIV–host interactions, identifies m6Am modified genes in T cells which are affected by viral infection, and reveals how HIV regulates host RNA epitranscriptomics through PCIF1 degradation.
m6Am is a modification of the 5′ end of mRNAs catalyzed by PCIF1. Here, Zhang et al. show that HIV infection induces a decrease in m6Am of cellular mRNAs through Vpr-mediated PCIF1 ubiquitination and degradation, resulting in increased HIV replication through regulation of host transcription factors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of California San Diego School of Medicine, Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
2 University of California San Diego School of Medicine, Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); University of California San Diego School of Medicine, Department of Biology, Bioinformatics Program, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
3 University of California, Environmental Toxicology Graduate Program and Department of Chemistry, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582)