It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The interaction of high-speed plasma jet created by a discharge in an ablative capillary with powerful pulse of microwave radiation (W≈600 kW, λ=2.3 cm, τ=8 μs) is studied. A significant influence of microwave radiation pulse on the plasma jet flow pattern, connected with the development of instability similar to the instability of the free shear flows, is found. Evolution of instability depends on the initial level of perturbation and the plasma flow velocity. The typical for gas jet flows “classical” evolution scenario of instability, including the steps of perturbation amplification, the formation of large-scale vortex structures, their nonlinear interaction and the development of turbulence is realized only at high intensities of the initial perturbation and plasma velocity close to the threshold of the laminar-turbulent transition. In the case of low-speed plasma jets the perturbation amplification leads, eventually, to the interruption of the flow without obvious signs of turbulence. The scenario of instability attenuation is realized at low levels of initial perturbation and generally is common both for low-speed and for high-speed jets, and includes the perturbation zone extension with its simultaneous drift downstream. The drift velocity of the perturbation is comparable to the plasma velocity in the peripheral zone of the jet, which indicates the shear nature of the instability. A significant influence of the plasma jet’s condition on the spatial position of the microwave pulse energy release domain is found.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia