Abstract

We propose a systematic theoretical framework for the topological amplitudes of the heavy meson decays and their SU(N) decomposition. In the framework, the topologies are expressed in invariant tensors and classified into tree- and penguin-operator-induced diagrams according to which four-quark operators, tree or penguin, being inserted into their effective weak vertexes. The number of possible topologies contributing to one type of decay can be counted by permutations and combinations. The Wigner-Eckhart theorem ensures the topological amplitudes under flavor symmetry are the same for different decay channels. By decomposing the four-quark operators into irreducible representations of SU(N) group, one can get the SU(N) irreducible amplitudes. Taking the D → PP decay (P denoting a pseudoscalar meson) with SU(3)F symmetry as an example, we present our framework in detail. The linear correlation of topologies in the SU(3)F limit is clarified in group theory. It is found there are only nine independent topologies in all tree- and penguin-operator-induced diagrams contributing to the D → PP decays in the Standard Model. If a large quark-loop diagram, named TLP, is assumed, the large ∆ACP and the very different D0→ K+K and D0→ π+π branching fractions can be explained with a normal U-spin breaking. Moreover, our framework provides a simple way to analyze the SU(N) breaking effects. The linear SU(3)F breaking and the high order U-spin breaking in charm decays are re-investigated in our framework, which are consistent with literature. Analogous to the degeneracy and splitting of energy levels, we propose the concepts of degeneracy and splitting of topologies to describe the flavor symmetry breaking effects in decay. As applications, we analyze the strange-less D decays in SU(3)F symmetry breaking into Isospin symmetry and the charm-less B decays in SU(4)F symmetry breaking into SU(3)F symmetry.

Details

Title
A self-consistent framework of topological amplitude and its SU(N) decomposition
Author
Wang, Di 1 ; Cai-Ping, Jia 2 ; Fu-Sheng, Yu 2 

 Hunan Normal University, Department of Physics, Changsha, People’s Republic of China (GRID:grid.411427.5) (ISNI:0000 0001 0089 3695); Lanzhou University, School of Nuclear Science and Technology, Lanzhou, People’s Republic of China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482) 
 Lanzhou University, School of Nuclear Science and Technology, Lanzhou, People’s Republic of China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482) 
Publication year
2021
Publication date
Sep 2021
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2574937250
Copyright
© The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.