It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Metal-poor stars with measurable r-process element abundances provide key clues to the production site(s) of the r-process and how its products are mixed with the surrounding medium. While the number of stars exhibiting strong enhancements of r-process elements has grown over the years, the lower “floor” of r-process enrichment in metal-poor stars has yet to be established, largely in part due to the difficulty in detecting weak neutron-capture element absorption lines in stellar spectra. Here we present detailed abundances of 16 neutron-capture elements for a star exhibiting the lowest level of r-process enrichment yet detected and still following the solar system r-process pattern. Taken into consideration with most of the r- process enriched stars currently in the literature, the range of r-process element enrichment spanned by this sample is at least ∼1.3dex or a factor of more than 20. That the r-process abundance pattern is unchanged while the degree of enrichment varies may suggest that the r- process yields are constant while the gas mass into which they are mixed varies. Given that all stars have similar [Fe/H] values then suggests that only one or few previous stellar generations provided the observed chemical abundances, meaning that perhaps only one r-process event occurred prior to their formation. This would be consistent with a (near) constant r-process yield per event. Obtaining detailed element abundances for stars with mild r-process element enhancements is necessary to better constrain the ubiquity of the r-process pattern, the yields of r-process elements, and the site of its production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, Massachusetts Institute of Technology & Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139, USA