It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The porous morphology of ceramic foams can significantly influence its heat and mass transport phenomena. Ceramic foams with dual-scale porosity provide flexibility for tailoring the coupled transport characteristics for enhanced performance. We numerically characterized the radiative transport in porous ceria foams with dual-scale porosity, i.e. exhibiting pores in the millimeter range in the micrometer range. Ceria can act as a catalyst- equivalent in high temperature thermochemical reactions for the direct synthesis of solar fuels and its bulk material properties vary significantly with wavelength. The methodology used is based on Monte Carlo methods for the solution of the volume-averaged radiative transfer equations for the determination of macroscopic optical properties such as reflectance or transmittance of a 1D slab. The exact millimeter-scale structure was incorporated by effective transport properties obtained through collision-based Monte Carlo methods. The micrometer- range strut porosity was incorporated using Mie theory and assuming independent scattering. The results allow for guiding the synthesis of ceramic foams with dual-scale porosity for enhanced radiative transport characteristics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ecole Polytechnique Fédérale de Lausanne, Institute of Mechanical Engineering, Lausanne, Switzerland
2 Groupe de Recherche en Sciences Pour l'Ingénieur (GRESPI), EA 4694, Université de Reims Champagne-Ardenne, Campus du Moulin de la Housse, F-51687, Reims, France