Full Text

Turn on search term navigation

© 2021 Molina et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Winter mortality can strongly affect the population dynamics of blue crabs (Callinectes sapidus) near poleward range limits. We simulated winter in the lab to test the effects of temperature, salinity, and estuary of origin on blue crab winter mortality over three years using a broad range of crab sizes from both Great South Bay and Chesapeake Bay. We fit accelerated failure time models to our data and to data from prior blue crab winter mortality experiments, illustrating that, in a widely distributed, commercially valuable marine decapod, temperature, salinity, size, estuary of origin, and winter duration were important predictors of winter mortality. Furthermore, our results suggest that extrapolation of a Chesapeake Bay based survivorship model to crabs from New York estuaries yielded poor fits. As such, the severity and duration of winter can impact northern blue crab populations differently along latitudinal gradients. In the context of climate change, future warming could possibility confer a benefit to crab populations near the range edge that are currently limited by temperature-induced winter mortality by shifting their range edge poleward, but care must be taken in generalizing from models that are developed based on populations from one part of the range to populations near the edges, especially for species that occupy large geographical areas.

Details

Title
Population level differences in overwintering survivorship of blue crabs (Callinectes sapidus): A caution on extrapolating climate sensitivities along latitudinal gradients
Author
Molina, Adelle I; Cerrato, Robert M; Nye, Janet A
First page
e0257569
Section
Research Article
Publication year
2021
Publication date
Sep 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2575053454
Copyright
© 2021 Molina et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.