It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Social media platforms attempting to curb abuse and misinformation have been accused of political bias. We deploy neutral social bots who start following different news sources on Twitter, and track them to probe distinct biases emerging from platform mechanisms versus user interactions. We find no strong or consistent evidence of political bias in the news feed. Despite this, the news and information to which U.S. Twitter users are exposed depend strongly on the political leaning of their early connections. The interactions of conservative accounts are skewed toward the right, whereas liberal accounts are exposed to moderate content shifting their experience toward the political center. Partisan accounts, especially conservative ones, tend to receive more followers and follow more automated accounts. Conservative accounts also find themselves in denser communities and are exposed to more low-credibility content.
Social media platforms moderating misinformation have been accused of political bias. Here, the authors use neutral social bots to show that, while there is no strong evidence for such a bias, the content to which Twitter users are exposed depends strongly on the political leaning of early Twitter connections.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Indiana University, Observatory on Social Media, Bloomington, USA (GRID:grid.411377.7) (ISNI:0000 0001 0790 959X)
2 Indiana University, Observatory on Social Media, Bloomington, USA (GRID:grid.411377.7) (ISNI:0000 0001 0790 959X); University of Exeter, Department of Computer Science, Exeter, UK (GRID:grid.8391.3) (ISNI:0000 0004 1936 8024)