Abstract

To investigate the flow field in a hyper-speed gas centrifuge, a hybrid difference scheme is used to discretize the axisymmetric Navier-Stokes equation. Source terms are included to simulate the injection and extraction of gas, also the mechanical drive of the scoops. The nonlinearity is obvious as the drive is strong. A Newton iteration used to solve the equation system becomes sensitive to the initial guess of the solution, which makes it difficult to converge. A homotopic method with self-adaptive steps is adopted to cope with this problem and to accelerate the iteration process. Numerical experiments simulating different strengths of scoop drive prove the effectiveness of the algorithm.

Details

Title
Homotopic method applied to solving the flow field in a gas centrifuge
Author
Zhang, Y N 1 ; Zeng, S 1 

 Department of Engineering Physics, Tsinghua University, Beijing 100084, China 
Publication year
2016
Publication date
Sep 2016
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2575219787
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.