It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Band gap engineering in ZnO thin films have been subject of intensive studies. The thin films of 2 wt % Fe and 2 wt % Ga doped ZnO and undoped ZnO were deposited on glass substrate by pulse laser deposition technique. Structural, optical and electronic structure properties of these thin films were investigated by X- Ray diffraction (XRD), UV-Vis spectroscopy and X-ray absorption spectroscopy (XAS), respectively. XRD studies show that all the thin films are highly oriented along the c-axis and maintain the wurtzite structure. Out of plane lattice parameter in Ga doped is smaller while in Fe doped is larger, compared to undoped ZnO. The band gaps of doped films have been found to increase due to doping of the Ga and Fe ions. XAS studies across O K edges of doped thin films show that the conduction band edge structure probed via oxygen 1s to 2p transitions have modified significantly in Ga doped sample.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
2 UGC-DAE Consortium for Scientific Research, Indore-452001
3 India department of Physics, Aligarh Muslim University, Aligarh 202002, India