It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Human biomonitoring provides an efficient and cost-effective way to identify and quantify exposure to chemical substances, including those having deleterious effects on human organisms. Once the risk of hazardous exposure has been identified and the mechanism of toxic effects has been elucidated, an ultimate decision about how to reduce exposure can be made. A particularly high risk of exposure to hazardous chemicals is associated with the use of pesticides in agriculture, especially the use of organophosphorous pesticides (OP), which are the most widely and commonly used insecticides worldwide. There is some strong evidence that chronic exposure to these compounds may have adverse effects on health. Exposure to pesticides has been associated with an increase in the incidence of non-Hodgkin’s lymphoma, multiple myeloma, soft tissue sarcoma, lung sarcoma, and cancer of the pancreas, stomach, liver, bladder and gall bladder, Parkinson disease, Alzheimer disease, and reproductive outcomes. In view of these findings, the detection of populations at risk constitutes a very important topic. The biomonitoring studies on individuals exposed to pesticides have shown an elevated level of indicators of DNA damage, such as chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), and recently, single cell gel electrophoresis (SCGE). The cytogenetic markers of DNA damage have become very popular and useful in providing an analytical data for risk assessment, such as internal exposure doses and early biological effects of both occupational and environmental exposure to pesticides. The article describes the usefulness and the limitations of these biomarkers in biomonitoring studies of populations exposed to pesticides, with regard to the main routes of uptake and different matrices, which can be used to monitor risk assessment in occupational settings. The article also summarizes the latest reports about biomarkers of susceptibility, and mentions other biomarkers widely used in biomonitoring studies, such as pesticide or its metabolites level.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer