It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Voyager 1 spacecraft is currently in the vicinity of the heliopause, which separates the heliosphere from the local interstellar medium. There has been a precipitous decrease in particles accelerated in the heliosphere, and a substantial increase in galactic cosmic rays (GCRs). The evidence is unclear, however, as to whether Voyager 1 has crossed the heliopause into the local interstellar medium, or remains within the heliosheath. In this paper we propose a test that will determine whether Voyager 1 has crossed the heliopause: If Voyager 1 remains in the heliosheath, the high plasma densities must be due to compressed solar wind, with the consequence that Voyager 1 will encounter another current sheet, where the polarity of the magnetic field reverses. Voyager 1 observations can be used to predict that the next current sheet crossing is likely to occur during 2015. A prediction is also provided as to what the Voyager 2 plasma detector will measure in the next few years.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St, Ann Arbor, MI 48109-2143 USA