It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We study a single-level quantum dot in the presence of strong Coulomb interaction under nonequilibrium condition. By extending the equation of motion method to nonequilibrium, we study the transport behavior of the system when a dc bias voltage is applied to the leads. The spectral density exhibits two broad peaks centered around the normalized dot level energies and a split Kondo resonance at low temperature with two peaks pinned at the Fermi level of each lead. The approach allows one to recover the unitary condition for the density of states at the Fermi levels and by the way to cure the long-standing problem about the presence of spurious peak in the density of states at equilibrium. Finally we discuss the consequences for the linear and differential conductances of the quantum dot in its steady state.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer