Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Fishes represent a useful model for evolutionary studies, given their diversity of species and habitats. In this study, we investigate the chromosomes of three unexplored Harttia fish species from the Amazonian region and compare the obtained data with previous analyses. Our data reveal that both Harttia dissidens and Harttia sp. 3 exhibit the same number of chromosomes in their cells (54), but that they differ in the karyotype organization. Harttia guianensis possesses 58 chromosomes, being thus the first representative from north Brazil to present this feature for both sexes. Although otherwise rather common in Harttia species, we observed no chromosomal differences between sexes in all but one species. Namely in Harttia sp. 3, we revealed signs of initial differentiation between homologues of one chromosome pair in males but not in females. Altogether, our data bring new evidence strengthening the view that Harttia spp. represent an informative model for studying patterns of karyotype and sex chromosome dynamics in teleost fishes.

Abstract

A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.

Details

Title
Adding New Pieces to the Puzzle of Karyotype Evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian Species
Author
Francisco de M C Sassi 1   VIAFID ORCID Logo  ; Moreira-Filho, Orlando 1 ; Deon, Geize A 2 ; Sember, Alexandr 3   VIAFID ORCID Logo  ; Bertollo, Luiz A C 1 ; Liehr, Thomas 4   VIAFID ORCID Logo  ; Oliveira, Vanessa C S 1   VIAFID ORCID Logo  ; Viana, Patrik F 5   VIAFID ORCID Logo  ; Feldberg, Eliana 5   VIAFID ORCID Logo  ; Vicari, Marcelo R 6   VIAFID ORCID Logo  ; de B Cioffi, Marcelo 1   VIAFID ORCID Logo 

 Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; [email protected] (F.d.M.C.S.); [email protected] (O.M.-F.); [email protected] (G.A.D.); [email protected] (L.A.C.B.); [email protected] (V.C.S.O.); [email protected] (M.d.B.C.) 
 Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; [email protected] (F.d.M.C.S.); [email protected] (O.M.-F.); [email protected] (G.A.D.); [email protected] (L.A.C.B.); [email protected] (V.C.S.O.); [email protected] (M.d.B.C.); Laboratório de Biologia Cromossômica, Estrutural e Função, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil; [email protected] 
 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277-21 Liběchov, Czech Republic; [email protected] 
 Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, 07747 Jena, Germany 
 Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, AM, Brazil; [email protected] (P.F.V.); [email protected] (E.F.) 
 Laboratório de Biologia Cromossômica, Estrutural e Função, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil; [email protected] 
First page
922
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576379839
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.