Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biological molecules because of its high negative charge and oxygen-rich surface, this cluster is being widely studied both in vitro and in vivo as a treatment for several global health problems such as diabetes mellitus, cancer, and Alzheimer’s disease. Here, we report a new decavanadate compound with organic molecules synthesized in an aqueous solution and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The decavanadate anion was combined with 2-aminopyrimidine to form the compound [2-ampymH]6[V10O28]·5H2O (1). In the crystal lattice, organic molecules are stacked by π–π interactions, with a centroid-to-centroid distance similar to that shown in DNA or RNA molecules. Furthermore, computational DFT calculations of Compound 1 corroborate the hydrogen bond interaction between pyrimidine molecules and decavanadate anions, as well as the π–π stacking interactions between the central pyrimidine molecules. Finally, docking studies with test RNA molecules indicate that they could serve as other potential targets for the anticancer activity of decavanadate anion.

Details

Title
2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity
Author
García-García, Amalia 1   VIAFID ORCID Logo  ; Noriega, Lisset 2 ; Meléndez-Bustamante, Francisco J 2 ; Castro, María Eugenia 3   VIAFID ORCID Logo  ; Sánchez-Gaytán, Brenda L 3 ; Choquesillo-Lazarte, Duane 4   VIAFID ORCID Logo  ; González-Vergara, Enrique 3   VIAFID ORCID Logo  ; Rodríguez-Diéguez, Antonio 5   VIAFID ORCID Logo 

 Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, CP, Mexico; [email protected] (A.G.-G.); [email protected] (M.E.C.); [email protected] (B.L.S.-G.); Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain 
 Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, CP, Mexico; [email protected] (L.N.); [email protected] (F.J.M.-B.) 
 Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, CP, Mexico; [email protected] (A.G.-G.); [email protected] (M.E.C.); [email protected] (B.L.S.-G.) 
 Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Av. Las Palmeras nº4, 18100 Granada, Spain; [email protected] 
 Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain 
First page
67
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576413343
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.