Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polymeric scaffolds made of PCL/PLCL (ratio 1:3, respectively) blends have been developed by using the Thermally Induced Phase Separation (TIPS) process. A new additional technique has been introduced in this study by applying pre-heat treatment to the blend solution before the TIPS process. The main objective of this study is to evaluate the influence of the pre-heat treatment on mechanical properties. The mechanical evaluation showed that the mechanical strength of the scaffolds (including tensile strength, elastic modulus, and strain) improved as the temperature of the polymer blend solution increased. The effects on the microstructure features were also observed, such as increasing strut size and differences in phase separation morphology. Those microstructure changes due to temperature control contributed to the increasing of mechanical strength. The in vitro cell study showed that the PCL/PLCL blend scaffold exhibited better cytocompatibility than the neat PCL scaffold, indicated by a higher proliferation at 4 and 7 days in culture. This study highlighted that the improvement of the mechanical strength of polymer blends scaffolds can be achieved using a very versatile way by controlling the temperature of the polymer blend solution before the TIPS process.

Details

Title
Improvement of Mechanical Strength of Tissue Engineering Scaffold Due to the Temperature Control of Polymer Blend Solution
Author
Azizah Intan Pangesty 1   VIAFID ORCID Logo  ; Todo, Mitsugu 2 

 Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia 
 Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan; [email protected] 
First page
47
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794983
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576435481
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.