Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study investigated whether type 2 diabetes (T2D) is associated with polymorphisms of genes encoding glutathione-metabolizing enzymes such as glutathione synthetase (GSS) and gamma-glutamyl transferase 7 (GGT7). A total of 3198 unrelated Russian subjects including 1572 T2D patients and 1626 healthy subjects were enrolled. Single nucleotide polymorphisms (SNPs) of the GSS and GGT7 genes were genotyped using the MassArray-4 system. We found that the GSS and GGT7 gene polymorphisms alone and in combinations are associated with T2D risk regardless of sex, age, and body mass index, as well as correlated with plasma glutathione, hydrogen peroxide, and fasting blood glucose levels. Polymorphisms of GSS (rs13041792) and GGT7 (rs6119534 and rs11546155) genes were associated with the tissue-specific expression of genes involved in unfolded protein response and the regulation of proteostasis. Transcriptome-wide association analysis has shown that the pancreatic expression of some of these genes such as EDEM2, MYH7B, MAP1LC3A, and CPNE1 is linked to the genetic risk of T2D. A comprehensive analysis of the data allowed proposing a new hypothesis for the etiology of type 2 diabetes that endogenous glutathione deficiency might be a key condition responsible for the impaired folding of proinsulin which triggered an unfolded protein response, ultimately leading to beta-cell apoptosis and disease development.

Details

Title
The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression
Author
Azarova, Iuliia 1   VIAFID ORCID Logo  ; Klyosova, Elena 2   VIAFID ORCID Logo  ; Polonikov, Alexey 3 

 Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; [email protected]; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia; [email protected] 
 Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia; [email protected] 
 Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia; Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia 
First page
886
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20751729
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576447360
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.