Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ultrasound-responsive microspheres (MPs) derived from natural polysaccharides and injectable hydrogels have been widely investigated as a biocompatible, biodegradable, and controllable drug delivery system and cell scaffolds for tissue engineering. In this study, kartogenin (KGN) loaded poly (lactide-co-glycolic acid) (PLGA) MPs (MPs@KGN) were fabricated by premix membrane emulsification (PME) method which were sonicated by an ultrasound transducer. Furthermore, carboxymethyl chitosan-oxidized chondroitin sulfate (CMC-OCS) hydrogel were prepared via the Schiff’ base reaction-embedded MPs to produce a CMC-OCS/MPs scaffold. In the current work, morphology, mechanical property, porosity determination, swelling property, in vitro degradation, KGN release from scaffolds, cytotoxicity, and cell bioactivity were investigated. The results showed that MPs presented an obvious collapse after ultrasound treatment. The embedded PLGA MPs could enhance the compressive elastic modulus of soft CMC-OCS hydrogel. The cumulative release KGN from MPs exhibited a slow rate which would display an appropriate collapse after ultrasound, allowing KGN to maintain a continuous concentration for at least 28 days. Moreover, the composite CMC-OCS@MPs scaffolds exhibited faster gelation, lower swelling ratio, and lower in vitro degradation. CCK-8 and LIVE/DEAD staining showed these scaffolds did not influence rabbit bone marrow mesenchymal stem cells (rBMMSCs) proliferation. Then these scaffolds were cultured with rBMMSCs for 2 weeks, and the immunofluorescent staining of collagen II (COL-2) showed that CMC-OCS hydrogel embedded with MPs@KGN (CMC-OCS@MPs@KGN) with ultrasound had the ability to increase the COL-2 synthesis. Overall, due to the improved mechanical property and the ability of sustained KGN release, this injectable hydrogel with ultrasound-responsive property is a promising system for cartilage tissue engineering.

Details

Title
Fabrication of Injectable Chitosan-Chondroitin Sulfate Hydrogel Embedding Kartogenin-Loaded Microspheres as an Ultrasound-Triggered Drug Delivery System for Cartilage Tissue Engineering
Author
Fu-Zhen, Yuan 1 ; Hu-Fei, Wang 2 ; Guan, Jian 1   VIAFID ORCID Logo  ; Jiang-Nan, Fu 1 ; Yang, Meng 1 ; Ji-Ying, Zhang 1 ; You-Rong, Chen 1 ; Wang, Xing 2 ; Jia-Kuo, Yu 1   VIAFID ORCID Logo 

 Department of Sports Medicine, Peking University Third Hospital, Beijing 100083, China; [email protected] (F.-Z.Y.); [email protected] (J.G.); [email protected] (J.-N.F.); [email protected] (M.Y.); [email protected] (J.-Y.Z.); [email protected] (Y.-R.C.); Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine of Peking University, Beijing 100191, China 
 Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected]; University of Chinese Academy of Sciences, Beijing 100049, China 
First page
1487
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576482411
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.