Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Poly(ethylene-co-vinyl acetate) (PECoVA) composite containing organophilic microcrystalline dolomite (OMCD) was studied to replace the non-recyclable silicone elastomer in biomedical application. Pristine dolomite (DOL) is an inorganic mineral filler and is hydrophilic in nature, hence incompatible with most polymers and limits its use in biomedical applications. DOL was subjected to a combination of size reduction, tip sonication and a surface modification process to obtain a more effective dolomite filler, known as OMCD, as reinforcement material in the PECoVA copolymer matrix. The effects of DOL and OMCD loadings (1, 3, 5 wt%) on the structure and properties of the PECoVA composite were investigated. According to the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), tensile and tear tests, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) analysis, the use of the OMCD filler brought a more pronounced positive impact to the PECoVA matrix as opposed to the DOL, where it enhanced the crystallinity of the matrix and led to much better matrix–filler interfacial interactions. Therefore, regardless of the filler loading, the PECoVA/OMCD composites demonstrate greater mechanical and thermal properties compared to the PECoVA/DOL composites. The best composite was produced with the OMCD loading of 3 wt%, in which the tensile strength (22.1 MPa), elongation at break (1413%) and Young’s modulus (2.0 MPa) of the copolymer matrix were increased by 44%, 23% and 21%, respectively. This proved that the combination of size reduction, tip sonication and the surface modification technique is efficient to obtain the PECoVA/dolomite composite with improved performance.

Details

Title
The Mechanical and Thermal Properties of Poly(ethylene-co-vinyl acetate) (PECoVA) Composites with Pristine Dolomite and Organophilic Microcrystalline Dolomite (OMCD)
Author
Lim Kean Chong 1 ; Osman, Azlin Fazlina 1   VIAFID ORCID Logo  ; Asfa Amalia Ahmad Fauzi 1 ; Alrashdi, Awad A 2   VIAFID ORCID Logo  ; Khairul Anwar Abdul Halim 1 

 Faculty of Chemical Engineering Technology, University Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; [email protected] (L.K.C.); [email protected] (A.A.A.F.); [email protected] (K.A.A.H.); Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia 
 Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Al-Qunfudah Center for Scientific Research (QCSR), Al Qunfudah 21962, Saudi Arabia; [email protected] 
First page
3034
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576482665
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.