Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is difficult to optimize the fault model parameters when Extreme Random Forest is used to detect the electric pitch system fault model of the double-fed wind turbine generator set. Therefore, Extreme Random Forest which was optimized by improved grey wolf algorithm (IGWO-ERF) was proposed to solve the problems mentioned above. First, IGWO-ERF imports the Cosine model to nonlinearize the linearly changing convergence factor α to balance the global exploration and local exploitation capabilities of the algorithm. Then, in the later stage of the algorithm iteration, α wolf generates its mirror wolf based on the lens imaging learning strategy to increase the diversity of the population and prevent local optimum of the population. The electric pitch system fault detection method of the wind turbine generator set sets the generator power of the variable pitch system as the main state parameter. First, it uses the Pearson correlation coefficient method to eliminate the features with low correlation with the electric pitch system generator power. Then, the remaining features are ranked by the importance of the RF features. Finally, the top N features are selected to construct the electric pitch system fault data set. The data set is divided into a training set and a test set. The training set is used to train the proposed fault detection model, and the test set is used for testing. Compared with other parameter optimization algorithms, the proposed method has lower FNR and FPR in the electric pitch system fault detection of the wind turbine generator set.

Details

Title
Fault Detection of Wind Turbine Electric Pitch System Based on IGWO-ERF
Author
Tang, Mingzhu 1   VIAFID ORCID Logo  ; Jiabiao Yi 1 ; Wu, Huawei 2 ; Wang, Zimin 3 

 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China; [email protected] (M.T.); [email protected] (J.Y.) 
 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 
 School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China; [email protected] 
First page
6215
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576497851
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.