Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper is concerned with modeling nonequilibrium phenomena in spatial domains with boundaries. The resultant models consist of hyperbolic systems of first-order partial differential equations with boundary conditions (BCs). Taking a linearized moment closure system as an example, we show that the structural stability condition and the uniform Kreiss condition do not automatically guarantee the compatibility of the models with the corresponding classical models. This motivated the generalized Kreiss condition (GKC)—a strengthened version of the uniform Kreiss condition. Under the GKC and the structural stability condition, we show how to derive the reduced BCs for the equilibrium systems as the classical models. For linearized problems, the validity of the reduced BCs can be rigorously verified. Furthermore, we use a simple example to show how thus far developed theory can be used to construct proper BCs for equations modeling nonequilibrium phenomena in spatial domains with boundaries.

Details

Title
Recent Advances on Boundary Conditions for Equations in Nonequilibrium Thermodynamics
Author
Wen-An, Yong 1 ; Zhou, Yizhou 2 

 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China 
 School of Mathematical Sciences, Peking University, Beijing 100871, China; [email protected] 
First page
1710
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576502841
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.