It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Experimental studies of core-excited molecules using three-dimensional multi particle momentum imaging are presented where bond rearrangement processes in dication species are analysed. The aim of the study is to understand the relation between the geometric changes associated with core-excited states and the kinetic energy released in particular molecular dissociation processes. The kinematics of individual fragmentation channels are studied by fully three-dimensional momentum imaging of fragments in coincidence. Examples are presented where the high efficiency of the instrument and the fully three-dimensional momentum capabilities are exploited to understand nuclear motion leading to bond rearrangement in core-excited states. We identify bond-rearrangement processes in water, carbonyl sulphide and acetylene which are initiated in the core-excited state. In water this is evidenced by the H+2/O+ ion pair, and in carbonyl sulphide the OS++C+ pair is the fingerprint of this reaction. In acetylene the H+2 + C+2 ion pair indicates a molecular geometry that changes from linear to strongly bent. We measure the angular distribution of all fragments and fragment pairs and for the bond rearrangement processes in water and in core-excited acetylene the angular distribution of fragments suggests that the bond rearrangement is very rapid.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, Lund University, Box 118, 22100 Lund, Sweden
2 Department of Physics, Lund University, Box 118, 22100 Lund, Sweden; Present address: MAX-Lab, Lund University, Box 118, Lund 221 00, Sweden
3 Department of Physics, Lund University, Box 118, 22100 Lund, Sweden; Present address: Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, F-91192 Gif-Sur-Yvette, France
4 The Hashemite University, Box 150459, Zarqa, 13115 Amman, Jordan