It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We study the transition from the hydrodynamic to the collisionless regime in collective modes of three- and two-dimensional Fermi gases by using the semiclassical Boltzmann equation. We use direct numerical simulations as well as the method of phase-space moments to solve the Boltzmann equation and show that the restriction to second-order moments is not accurate enough. By including higher-order moments, we can successfully describe the hydrodynamic to collisionless transition observed in the quadrupole mode in three-dimensional Fermi gases and the frequency shift and damping of the sloshing mode due to the anharmonic shape of the experimental trap potential. In the case of two-dimensional Fermi gases, however, the strong damping of the quadrupole mode observed in a recent experiment remains unexplained.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institut de Physique Nucléaire, CNRS/IN2P3 and University Paris Sud, 91406 Orsay cedex, France
2 Centro de Física Computacional, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
3 IPN Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 69622 Villeurbanne cedex, France
4 Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany