Abstract

Accurate volumetric and heat capacity relationships have been developed for graphite and diamond carbon forms for use with the Jaguar thermochemical equilibrium program for the calculation of the detonation properties of explosives. Available experimental thermodynamic properties and Hugoniot values have been analyzed to establish the equations of state for the carbon phases. The diamond-graphite transition curve results from the equality of the chemical potentials of the phases. The resulting relationships are utilized to examine the actual phase behaviour of carbon under shock conditions. The existence of metastable carbon states is established by analyses of Hugoniot data for hydrocarbons and explosives at elevated temperatures and pressures. The accuracy of the resulting relationships is demonstrated by comparisons for several properties, including the Hugoniot behaviour of oxygen-deficient explosives at overdriven conditions.

Details

Title
Improved relationships for the thermodynamic properties of carbon phases at detonation conditions
Author
Stiel, L I 1 ; Baker, E L 2 ; Murphy, D J 2 

 Polytechnic Institute of NYU, Brooklyn, NY, USA 
 U.S. ARMY ARDEC, Picatinny, NJ, USA 
Publication year
2014
Publication date
May 2014
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576627496
Copyright
© 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.