It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Accurate load simulations are necessary in order to design cost-efficient support structures for offshore wind turbines. Due to software limitations and confidentiality issues, support structures are often designed with sequential analyses, where simplified wind turbine and support structure models replace more detailed models. The differences with an integrated analysis are studied here for a commercial OWEC Quattropod. Integrated analysis seems to generally predict less damage than sequential analysis, decreasing by 30-70 percent in two power production cases with small waves.
Additionally it was found that using a different realization of the wave forces for the retrieval run in sequential analysis leads to an increase of predicted damage, which can be explained as the effect of applying two independent wave force series at the same time.
The midsection of the detailed support structure model used shell elements. Additional analyses for a model with an equivalent beam model of the midsection showed only small differences, mostly overpredicting damage by a few percent. Such models can therefore be used for relatively accurate analysis, if carefully calibrated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7a, 7491 Trondheim, Norway
2 OWEC Tower AS, Storetveitvegen 96, 5072 Bergen, Norway