It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A surface reaction kinetic model for the combustion of methanol/air mixture was developed in order to investigate the ignition inhibitory mechanism of wall on the premixed gas in a micro closed volume. In this model, except for H, O, OH and CH3 radicals, the absorption of hydrogen peroxide and hydroperoxyl on the surface were also considered. By applying CHEMKIN-Pro software, the model was integrated into the calculation of homogeneous combustion process of gas mixture. Surface reactions were found resulting in the increase of ignition delay time. The sensitivity analysis showed that the loss of hydrogen peroxide on the wall was the main reason, due to the direct suppression effect on the generation and accumulation of OH in the radical pool. However, the loss of hydroperoxyl would take the place of hydrogen peroxide as the main inhibitory factor when the sticking coefficient became as large as the order of 10−3. In addition, the ignition delay time increased with sticking coefficient or surface-area-to-volume ratio. Enhancing the initial temperature of premixed gas was able to reduce the inhibitory effect of surface reactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China