Full text

Turn on search term navigation

© 2021 Dent et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Movement of the visual environment presented through virtual reality (VR) has been shown to invoke postural adjustments measured by increased body sway. The effect of auditory information on body sway seems to be dependent on context with sounds such as white noise, tones, and music being used to amplify or suppress sway. This study aims to show that music manipulated to match VR motion further increases body sway. Twenty-eight subjects stood on a force plate and experienced combinations of 3 visual conditions (VR translation in the AP direction at 0.1 Hz, no translation, and eyes closed) and 4 music conditions (Mozart’s Jupiter Symphony modified to scale volume at 0.1 Hz and 0.25 Hz, unmodified music, and no music) Body sway was assessed by measuring center of pressure (COP) velocities and RMS. Cross-coherence between the body sway and the 0.1 Hz and 0.25 Hz stimuli was also determined. VR translations at 0.1 Hz matched with 0.1Hz shifts in music volume did not lead to more body sway than observed in the no music and unmodified music conditions. Researchers and clinicians may consider manipulating sound to enhance VR induced body sway, but findings from this study would not suggest using volume to do so.

Details

Title
The effect of music on body sway when standing in a moving virtual environment
Author
Dent, Shaquitta; Burger, Kelley; Stevens, Skyler; Smith, Benjamin D; Streepey, Jefferson W
First page
e0258000
Section
Research Article
Publication year
2021
Publication date
Sep 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2577424031
Copyright
© 2021 Dent et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.