Abstract

The effects of total solids (TS) content on the performance of anaerobic digestion (AD) treating food waste (FW) and kinetic characteristics were investigated in mesophilic batch reactors. The results showed that FW could be digested normally in the AD system within the TS of 3%-30%. The volume methane yield of dry-AD increased by 5.2-10.6 times than that of wet-AD and the degradation time of unit substrate was shortened by 35%-71%. The system stability indicators of dry-AD, such as pH, VFA/TA, TAN and salt remain within the suppression threshold after digestion. dry-AD had obvious advantages. The kinetic analysis showed that ADM1 could be used to simulate the anaerobic digestion reactor of FW, and accurately simulated the methane production in different TS systems after calibrating. With the increase of TS, the hydrolysis and methane production showed a tendency to increase first and then decrease, but the decrease rate of hydrolysis was higher than that of methanogene. Increasing TS simultaneously weaken the hydrolysis rate and methanation rate, but the effect on the hydrolysis and acidification phase weaker. The ratio of the hydrolysis rate constant to the methanogenic Monod maximum specific absorption rate (khy/km_ac) was a new perspective to used to evaluate the balance between the hydrolysis stage and the methane production stage. The results show that the khy/km_ac ratio of the 15% TS and 20% TS experimental groups was close to 1. It can be speculated that the system TS between 15%-20% can be used as recommended value in anaerobic digestion engineering design to treat FW. Within this TS range, hydrolysis and methane production dynamics matching, the accumulation of inhibitors is also in a relatively moderate state in the threshold.

Details

Title
Effect of total solids contents on the performance of anaerobic digester treating food waste and kinetics evaluation
Author
Xiao-Fei, Zhao; Yan-Qi, Yuan; Qing-Kong, Chen; Li, Qi; Huang, Yan; Wu, Di; Li, Lei
Section
Environmental Pollution and Pollution Monitoring and Control Technology
Publication year
2021
Publication date
2021
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2577549444
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.