It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For the design of high-speed catamarans, different distances between slices have obvious interference with the total resistance of the catamaran. In order to accurately predict the hydrodynamic characteristics of the catamaran and explore the interference of the chip spacing on the resistance prediction, this paper uses a combination of CFD calculations and empirical formulas to predict the ship model resistance under different chip spacings and calculate them. The result is compared with the empirical formula. The results of the ship model test and the results calculated by the empirical formula were used to verify the numerical calculation results. The results show that the resistance change trend is consistent, and the numerical calculation method is effective and feasible. Finally, the numerical calculation method is compared with the ship model test method, and the result is within the error range, which has certain reference value for the design and optimization of the catamaran model parameters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer