It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Plasma imaging diagnostics plays an important role for laser ICF. Based on the urgent need to carry out high-resolution, high-throughput plasma diagnostics, grazing-incidence X-ray Kirkpatrick-Baez (KB) microscopes and normal-incidence EUV Schwarzschild imaging system were developed. The X-ray multilayer KB microscopes were successfully been applied in the physics experiments of SGII laser facility. Combined with streaked camera, the Mo-backlit implosion flow line of hollow Carbon-Hydrogen (CH) spherical target was obtained in SGII. The 4.75keV single-channel and four-channel KB microscopes were also developed for self-emission and short-pulse backlit imaging diagnostic of CH cylindrical target. In addition, according to the need of ultra-short laser pulse plasma diagnostics, the Schwarzschild imaging system working at 68eV was researched, and the physical experiments of hot electron transport with Schwarzschild imaging system were performed in SILEX-I laser facility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tongji University, Shanghai, 200092, People's Republic of China; Key Laboratory of Advanced Micro-structured Materials (MOE), Tongji University, Shanghai, 200092, People's Republic of China
2 School of Political Science and International Relations, Tongji University, Shanghai, 200092, People's Republic of China