It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
UAV (Unmanned Aerial Vehicle) has broad application prospects in various fields. In order to meet the needs of stability and efficiency during flight, a surface-mounted permanent magnet synchronous motor is used as its rotor motor, and a position sensorless control technology is used to control the rotor motor with high efficiency and high dynamic response. This paper proposes a position sensorless control strategy in the full speed range for the actual application requirements of UAV. In low speed ange, I/F control strategy with speed-open-loop and current-closed-loop is. In medium and high speed range, a sliding mode observer is adopted to provide estimated rotor position and speed. To achieve smooth switching from I/F control stage to speed closed-loop stage, a switching algorithm is proposed. The feasibility of the proposed hybrid control strategy is verified by simulation results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer