It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Microfluidic fuel cells (μFFC) are emerging as a promising solution for small-scale power demands. The T-shaped architecture of the μFFC promotes a laminar flow regimen between the catholyte and anolyte streams excluding the use of a membrane, this property allows a simplest design and the use of several micromachining techniques based on a lab-on-chip technologies. This work presents a combination of new materials and low cost fabrication processes to develop a light, small, flexible and environmental friendly device able to supply the energy demand of some portable devices. Well-defined and homogeneous Pd nanocubes which exhibited the (100) preferential crystallographic plane were supported on Vulcan carbon and used as anodic electrocatalyst in a novel and compact design of a SU-8 μFFC feeded with formic acid as fuel. The SU-8 photoresist properties and the organic microelectronic technology were important factors to reduce the dimensions of the μFFC structure. The results obtained from polarization and power density curves exhibited the highest power density (8.3 mW cm−2) reported in literature for direct formic acid μFFCs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Centro de Investigación y Desarrollo Tecnológico en Electroquímica, 76703 Querétaro, Mexico
2 División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
3 Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain