Full Text

Turn on search term navigation

© 2021 Ahammad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the COVID-19 pandemic continues to ravage across the globe and take millions of lives and like many parts of the world, the second wave of the pandemic hit Bangladesh, this study aimed at understanding its causative agent, SARS-CoV-2 at the genomic and proteomic level and provide precious insights about the pathogenesis, evolution, strengths and weaknesses of the virus. As of Mid-June 2021, over 1500 SARS-CoV-2 genomesequences have been deposited in the GISAID database from Bangladesh which were extracted and categorized into two waves. By analyzing these genome sequences, it was discovered that the wave-2 samples had a significantly greater average rate of mutation/sample (30.79%) than the wave-1 samples (12.32%). Wave-2 samples also had a higher frequency of deletion, and transversion events. During the first wave, the GR clade was the most predominant but it was replaced by the GH clade in the latter wave. The B.1.1.25 variant showed the highest frequency in wave-1 while in case of wave-2, the B.1.351.3 variant, was the most common one. A notable presence of the delta variant, which is currently at the center of concern, was also observed. Comparison of the Spike protein found in the reference and the 3 most common lineages found in Bangladesh namely, B.1.1.7, B.1.351, B.1.617 in terms of their ability to form stable complexes with ACE2 receptor revealed that B.1.617 had the potential to be more transmissible than others. Importantly, no indigenous variants have been detected so far which implies that the successful prevention of import of foreign variants can diminish the outbreak in the country.

Details

Title
Wave-wise comparative genomic study for revealing the complete scenario and dynamic nature of COVID-19 pandemic in Bangladesh
Author
Ishtiaque Ahammad; Hossain, Mohammad Uzzal; Rahman, Anisur; Zeshan Mahmud Chowdhury; Bhattacharjee, Arittra; Das, Keshob Chandra; Chaman Ara Keya; Salimullah
First page
e0258019
Section
Research Article
Publication year
2021
Publication date
Sep 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2577863826
Copyright
© 2021 Ahammad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.