Full text

Turn on search term navigation

Copyright © 2021 Romina Tanideh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Objective. Manganese (Mn) has been reported, through dietary and occupational overexposure, to induce neurotoxicity named manganism. Pentoxifylline (PTX) administration attracts much attention considering the beneficial properties of PTX, as an anti-inflammatory and smooth muscle relaxation agent. This in vivo study aims to evaluate the effect of PTX on manganism in rat model. Materials and Methods. Thirty adult male Sprague Dawley rats received MnCl2 (100 mg/kg, i.p. on days 1, 3, and 7) during a week alone or in combination with PTX (300 mg/kg, i.p. every day for 8 consecutive days on manganism rat model). Several locomotor activity indices, as well as biomarkers of oxidative stress, were monitored in the brain tissue of Mn-exposed animals. Results. It was found that PTX supplementation (300 mg/kg, i.p.) deteriorated the Mn-induced locomotor deficit. This drug also increased the Mn brain accumulation as well as reactive oxygen species (ROS) and lipid peroxidation products in the manganism rat model. Moreover, the levels of total antioxidant capacity (TAC) and glutathione (GSH) were shown to be reduced significantly compared to the control group. Conclusion. The results of this study revealed that PTX at a high dose (300 mg/kg) might increase manganism complications. PTX lowers the blood viscosity, improves the tissue perfusion, and increases the Mn levels in the brain.

Details

Title
Effects of Pentoxifylline in a Rat Model of Manganism: Evaluation of the Possible Toxicity
Author
Tanideh, Romina 1   VIAFID ORCID Logo  ; Farshad, Omid 2   VIAFID ORCID Logo  ; Jamshidzadeh, Akram 2   VIAFID ORCID Logo  ; Iraji, Aida 3   VIAFID ORCID Logo 

 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran 
 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran 
 Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran 
Editor
Murat Senturk
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
20909063
e-ISSN
20909071
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2578642387
Copyright
Copyright © 2021 Romina Tanideh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/