Full text

Turn on search term navigation

© 2021 Javaid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present work covers the flow and heat transfer model for the Power-law nanofluid in the presence of a porous medium over a penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s porous medium. The flow and heat transfer models are examined with the effect of linear thermal radiation in the flow regime. The Rosseland approximation is utilized for the optically thick nanofluid. The governing partial differential equations are solved using Lie symmetry analysis to find the reductions and invariants for the closed-form solutions. These invariants are then utilized to obtain the exact solutions for the shear-thinning, Newtonian, and shear-thickening nanofluids. In the end, all solutions are plotted for the Cu-water nanofluid to observe the effect of different emerging flow and heat transfer parameters.

Details

Title
Group theoretical analysis for unsteady magnetohydrodynamics flow and radiative heat transfer of power-law nanofluid subject to Navier’s slip conditions
Author
Saba Javaid; Aziz, Asim; Aziz, Taha
First page
e0258107
Section
Research Article
Publication year
2021
Publication date
Oct 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580326694
Copyright
© 2021 Javaid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.