It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Toll-like receptor (TLR)-4 and TLR9 are known to play important roles in the immune system, and several studies have shown their association with the development of rheumatoid arthritis (RA) and regulation of tumor necrosis factor alpha (TNF-α). However, studies that investigate the association between TLR4 or TLR9 gene polymorphisms and remission of the disease in RA patients taking TNF-α inhibitors have yet to be conducted. In this context, this study was designed to investigate the effects of polymorphisms in TLR4 and TLR9 on response to TNF-α inhibitors and to train various models using machine learning approaches to predict remission. A total of six single nucleotide polymorphisms (SNPs) were investigated. Logistic regression analysis was used to investigate the association between genetic polymorphisms and response to treatment. Various machine learning methods were utilized for prediction of remission. After adjusting for covariates, the rate of remission of T-allele carriers of TLR9 rs352139 was about 5 times that of the CC-genotype carriers (95% confidence interval (CI) 1.325–19.231, p = 0.018). Among machine learning algorithms, multivariate logistic regression and elastic net showed the best prediction with the area under the receiver-operating curve (AUROC) value of 0.71 (95% CI 0.597–0.823 for both models). This study showed an association between a TLR9 polymorphism (rs352139) and treatment response in RA patients receiving TNF-α inhibitors. Moreover, this study utilized various machine learning methods for prediction, among which the elastic net provided the best model for remission prediction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chungbuk National University, College of Pharmacy, Cheongju, Republic of Korea (GRID:grid.254229.a) (ISNI:0000 0000 9611 0917)
2 Ajou University, College of Pharmacy, Suwon, Republic of Korea (GRID:grid.251916.8) (ISNI:0000 0004 0532 3933)
3 Ajou University School of Medicine, Department of Rheumatology, Suwon, Republic of Korea (GRID:grid.251916.8) (ISNI:0000 0004 0532 3933)
4 Chungbuk National University Hospital, Division of Rheumatology, Department of Internal Medicine, Cheongju, Republic of Korea (GRID:grid.411725.4) (ISNI:0000 0004 1794 4809)