Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Suicide poses a serious problem globally, especially among the elderly population. To tackle the issue, this study aimed to develop a model for predicting suicide by using machine learning based on the elderly population. To obtain a large sample, the study used the big data health screening cohort provided by the National Health Insurance Sharing Service. By applying a machine learning technique, a predictive model that comprehensively utilized various factors was developed to select the elderly aged > 65 years at risk of suicide. A total of 48,047 subjects were included in the analysis. Individuals who died by suicide were older, and the number of men was significantly greater. The suicide group had a more prominent history of depression, with the use of medicaments significantly higher. Specifically, the prescription of benzodiazepines alone was associated with a high suicide risk. Furthermore, body mass index, waist circumference, total cholesterol, and low-density lipoprotein level were lower in the suicide group. We developed a model for predicting suicide by using machine learning based on the elderly population. This suicide prediction model can satisfy the performance to some extent by employing only the medical service usage behavior without subjective reports.

Details

Title
Development of a Suicide Prediction Model for the Elderly Using Health Screening Data
Author
Seo-Eun Cho 1 ; Zong Woo Geem 2   VIAFID ORCID Logo  ; Kyoung-Sae Na 1   VIAFID ORCID Logo 

 Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, Korea; [email protected] 
 College of IT Convergence, Gachon University, Seongnam 13120, Korea; [email protected] 
First page
10150
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580969635
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.