Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Glacier evolution with time provides important information about climate variability. Here, we investigated glacier velocity changes in the Himalayas and analysed the patterns of glacier flow. We collected 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derived velocity changes between 1999 and 2018 for the early winter period, based on which we performed a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32% have sped up, 24.5% have slowed down, and the rest 43.5% have remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is significantly larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, while increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, i.e., velocity increases with increasing mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are spatially and temporally heterogeneous, in agreement with studies that previously highlighted this trend, emphasising complex interactions between glacier dynamics and environmental forcing.

Details

Title
Glacier Velocity Changes in the Himalayas in Relation to Ice Mass Balance
Author
Zhou, Yu 1 ; Chen, Jianlong 2 ; Cheng, Xiao 3   VIAFID ORCID Logo 

 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519000, China; [email protected] (Y.Z.); [email protected] (J.C.) 
 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519000, China; [email protected] (Y.Z.); [email protected] (J.C.); Guangdong Geological Survey Institute, Guangzhou 510062, China 
 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519000, China 
First page
3825
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580991507
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.