Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is extremely important and necessary for low computing power or portable devices to design more lightweight algorithms for image super-resolution (SR). Recently, most SR methods have achieved outstanding performance by sacrificing computational cost and memory storage, or vice versa. To address this problem, we introduce a lightweight U-shaped residual network (URNet) for fast and accurate image SR. Specifically, we propose a more effective feature distillation pyramid residual group (FDPRG) to extract features from low-resolution images. The FDPRG can effectively reuse the learned features with dense shortcuts and capture multi-scale information with a cascaded feature pyramid block. Based on the U-shaped structure, we utilize a step-by-step fusion strategy to improve the performance of feature fusion of different blocks. This strategy is different from the general SR methods which only use a single Concat operation to fuse the features of all basic blocks. Moreover, a lightweight asymmetric residual non-local block is proposed to model the global context information and further improve the performance of SR. Finally, a high-frequency loss function is designed to alleviate smoothing image details caused by pixel-wise loss. Simultaneously, the proposed modules and high-frequency loss function can be easily plugged into multiple mature architectures to improve the performance of SR. Extensive experiments on multiple natural image datasets and remote sensing image datasets show the URNet achieves a better trade-off between image SR performance and model complexity against other state-of-the-art SR methods.

Details

Title
URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution
Author
Wang, Yuntao 1   VIAFID ORCID Logo  ; Zhao, Lin 2 ; Liu, Liman 1   VIAFID ORCID Logo  ; Hu, Huaifei 1 ; Tao, Wenbing 2   VIAFID ORCID Logo 

 School of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China; [email protected] (Y.W.); [email protected] (H.H.) 
 National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (L.Z.); [email protected] (W.T.) 
First page
3848
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580996587
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.