Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

NiWAu trimetallic nanoparticles (NPs) on the surface of support Al2O3-CeO2-TiO2 were synthesized by a three-step synthetic method in which Au NPs were incorporated into presynthesized NiW/Al2O3-CeO2-TiO2. The recharge method, also known as the redox method, was used to add 2.5 wt% gold. The Al2O3-CeO2-TiO2 support was made by a sol–gel method with two different compositions, and then two metals were simultaneously loaded (5 wt% nickel and 2.5 wt% tungsten) by two different methods, incipient wet impregnation and ultrasound impregnation method. In this paper, we study the effect of Au addition using the recharge method on NiW nanomaterials supported on mixed oxides on the physicochemical properties of synthesized nanomaterials. The prepared nanomaterials were characterized by scanning electron microscopy, BET specific surface area, X-ray diffraction, diffuse reflectance spectroscopy in the UV–visible range and temperature-programmed desorption of hydrogen. The experimental results showed that after loading of gold, the dispersion was higher (46% and 50%) with the trimetallic nanomaterials synthesized by incipient wet impregnation plus recharge method than with impregnation plus ultrasound recharge method, indicating a greater number of active trimetallic (NiWAu) sites in these materials. Small-sized Au from NiWAu/ACTU1 trimetallic nanostructures was enlarged for NiWAu/ACT1. The strong metal NPs–support interaction shown for the formation of NiAl2O4, Ni-W-O and Ni-Au-O species simultaneously present in the surface of trimetallic nanomaterial probably plays an important role in the degree of dispersion of the gold active phase.

Details

Title
Chemical and Structural Changes by Gold Addition Using Recharge Method in NiW/Al2O3-CeO2-TiO2 Nanomaterials
Author
Cortez-Elizalde, Jorge 1   VIAFID ORCID Logo  ; Cuauhtémoc-López, Ignacio 1   VIAFID ORCID Logo  ; Guerra-Que, Zenaida 2   VIAFID ORCID Logo  ; Alejandra Elvira Espinosa de los Monteros 1   VIAFID ORCID Logo  ; Ma Antonia Lunagómez-Rocha 1 ; Silahua-Pavón, Adib Abiu 1 ; Arévalo-Pérez, Juan Carlos 1 ; Cordero-García, Adrián 1 ; Cervantes-Uribe, Adrián 1 ; Torres-Torres, José Gilberto 1   VIAFID ORCID Logo 

 Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuen-tes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Universidad Juárez Autónoma de Tabasco, DACB, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cun-duacán 86690, Tabasco, Mexico; [email protected] (J.C.-E.); [email protected] (I.C.-L.); [email protected] (A.E.E.d.l.M.); [email protected] (M.A.L.-R.); [email protected] (A.A.S.-P.); [email protected] (J.C.A.-P.); [email protected] (A.C.-G.); [email protected] (A.C.-U.) 
 Laboratorio de Investigación 1 Área de Nano-Tecnología, Tecnológico Nacional de México Campus Villahermosa, Km. 3.5 Carretera Villahermosa–Frontera, Cd. Industrial, Villahermosa 86010, Tabasco, Mexico; [email protected] 
First page
5470
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581049863
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.