Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A longstanding challenge for accurate sensing of biomolecules such as proteins concerns specifically detecting a target analyte in a complex sample (e.g., food) without suffering from nonspecific binding or interactions from the target itself or other analytes present in the sample. Every sensor suffers from this fundamental drawback, which limits its sensitivity, specificity, and longevity. Existing efforts to improve signal-to-noise ratio involve introducing additional steps to reduce nonspecific binding, which increases the cost of the sensor. Conducting polymer-based chemiresistive biosensors can be mechanically flexible, are inexpensive, label-free, and capable of detecting specific biomolecules in complex samples without purification steps, making them very versatile. In this paper, a poly (3,4-ethylenedioxyphene) (PEDOT) and poly (3-thiopheneethanol) (3TE) interpenetrating network on polypropylene–cellulose fabric is used as a platform for a chemiresistive biosensor, and the specific and nonspecific binding events are studied using the Biotin/Avidin and Gliadin/G12-specific complementary binding pairs. We observed that specific binding between these pairs results in a negative ΔR with the addition of the analyte and this response increases with increasing analyte concentration. Nonspecific binding was found to have the opposite response, a positive ΔR upon the addition of analyte was seen in nonspecific binding cases. We further demonstrate the ability of the sensor to detect a targeted protein in a dual-protein analyte solution. The machine-learning classifier, random forest, predicted the presence of Biotin with 75% accuracy in dual-analyte solutions. This capability of distinguishing between specific and nonspecific binding can be a step towards solving the problem of false positives or false negatives to which all biosensors are susceptible.

Details

Title
Isolating Specific vs. Non-Specific Binding Responses in Conducting Polymer Biosensors for Bio-Fingerprinting
Author
Smith, Phil M 1   VIAFID ORCID Logo  ; Sutradhar, Indorica 2 ; Telmer, Maxwell 1 ; Magar, Rishikesh 1 ; Amir Barati Farimani 1 ; Reeja-Jayan, B 1 

 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] (P.M.S.); [email protected] (M.T.); [email protected] (R.M.); [email protected] (A.B.F.) 
 Department of Materials Science & Engineering & Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] 
First page
6335
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581053893
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.