Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to investigate the applicability of deep learning algorithms to (monthly) surface water quality forecasting. A comparison was made between the performance of an autoregressive integrated moving average (ARIMA) model and four deep learning models. All prediction algorithms, except for the ARIMA model working on a single variable, were tested with univariate inputs consisting of one of two dependent variables as well as multivariate inputs containing both dependent and independent variables. We found that deep learning models (6.31–18.78%, in terms of the mean absolute percentage error) showed better performance than the ARIMA model (27.32–404.54%) in univariate data sets, regardless of dependent variables. However, the accuracy of prediction was not improved for all dependent variables in the presence of other associated water quality variables. In addition, changes in the number of input variables, sliding window size (i.e., input and output time steps), and relevant variables (e.g., meteorological and discharge parameters) resulted in wide variation of the predictive accuracy of deep learning models, reaching as high as 377.97%. Therefore, a refined search identifying the optimal values on such influencing factors is recommended to achieve the best performance of any deep learning model in given multivariate data sets.

Details

Title
Assessing the Performance of Deep Learning Algorithms for Short-Term Surface Water Quality Prediction
Author
Choi, Heelak 1 ; Sang-Ik Suh 2 ; Su-Hee, Kim 2 ; Eun Jin Han 1 ; Seo, Jin Ki 2   VIAFID ORCID Logo 

 Water Quality Assessment Research Division, Water Environment Research Department, National Institute of Environmental Research, Incheon 22689, Korea; [email protected] (H.C.); [email protected] (E.J.H.) 
 Department of Environmental Engineering, Gyeongsang National University, Jinju 52725, Korea; [email protected] (S.-I.S.); [email protected] (S.-H.K.) 
First page
10690
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581066036
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.