Full text

Turn on search term navigation

© 2021 Dacal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil-transmitted helminths (STH) are the most prevalent pathogens among the group of neglected tropical diseases (NTDs). The Kato-Katz technique is the diagnosis method recommended by the World Health Organization (WHO) although it often presents a decreased sensitivity in low transmission settings and it is labour intensive. Visual reading of Kato-Katz preparations requires the samples to be analyzed in a short period of time since its preparation. Digitizing the samples could provide a solution which allows to store the samples in a digital database and perform remote analysis. Artificial intelligence (AI) methods based on digitized samples can support diagnosis by performing an objective and automatic quantification of disease infection. In this work, we propose an end-to-end pipeline for microscopy image digitization and automatic analysis of digitized images of STH. Our solution includes (a) a digitization system based on a mobile app that digitizes microscope samples using a 3D printed microscope adapter, (b) a telemedicine platform for remote analysis and labelling, and (c) novel deep learning algorithms for automatic assessment and quantification of parasitological infections by STH. The deep learning algorithm has been trained and tested on 51 slides of stool samples containing 949 Trichuris spp. eggs from 6 different subjects. The algorithm evaluation was performed using a cross-validation strategy, obtaining a mean precision of 98.44% and a mean recall of 80.94%. The results also proved the potential of generalization capability of the method at identifying different types of helminth eggs. Additionally, the AI-assisted quantification of STH based on digitized samples has been compared to the one performed using conventional microscopy, showing a good agreement between measurements. In conclusion, this work has presented a comprehensive pipeline using smartphone-assisted microscopy. It is integrated with a telemedicine platform for automatic image analysis and quantification of STH infection using AI models.

Details

Title
Mobile microscopy and telemedicine platform assisted by deep learning for the quantification of Trichuris trichiura infection
First page
e0009677
Section
Research Article
Publication year
2021
Publication date
Sep 2021
Publisher
Public Library of Science
ISSN
19352727
e-ISSN
19352735
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582585227
Copyright
© 2021 Dacal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.